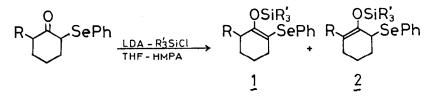
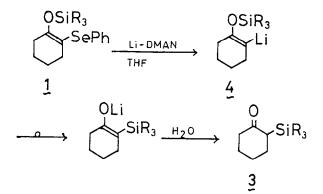
Tetrahedron Letters, Vol.22, No.25, pp 2381 - 2384, 1981 Printed in Great Britain

PREPARATION OF α -TRIALKYLSILYL KETONES FROM α -PHENYLSELENO DERIVATIVES VIA THEIR SILYL ENOL ETHERS


Isao Kuwajima^{*} and Ryo Takeda Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

Summary: On treatment with metallic lithium in the presence of dimethylaminonaphthalene, trialkylsilyl enol ethers of α -phenylseleno ketones were converted into the corresponding α -trialkylsilyl ketones in good yields.


Silyl enol ethers have widely been employed as versatile synthetic materials and various synthetic methods have been devised for their regio-controlled preparation.¹⁾ Recently, unique reactivities of their structural isomers, α -trialkylsilyl ketones, have also been recognized,²⁾ but their preparative methods are now quite limited.³⁾ Especially, difficulties are usually encountered in the preparation of cyclic ketone derivatives possessing sterically hindered silyl groups.

We have been interested in the generation of reactive species utilizing a facile cleavage of weak carbon-selenium bonds under the influence of alkyllithiums or alkali metal.⁴⁾ Examination of this procedure with silyl enol ethers of α -phenylseleno carbonyl compounds led us to finding a general method for the preparation of such compounds having various trialkylsilyl groups.

Recent development of organoselenium chemistry has offered several useful methods for regioselective synthesis of α -phenylseleno carbonyl compounds.⁵⁾ Various α -phenylseleno ketones could be converted into the corresponding silyl enol ethers in highly regio-controlled manner. For example, 2-phenylseleno-6-methylcyclohexanone gave the silyl enol ether <u>1</u> (R = CH₃) in 87% yield when treated with lithium diisopropylamide (LDA) and t-butyldimethyl-silyl chloride in THF-HMPA at -78°C. Similarly, silylation of 2-phenylseleno-cyclohexanone at 0°C afforded the corresponding ether <u>1</u> (R = H) in 82% yield along with a trace amount of the regio-isomer <u>2</u> (R = H).

In order to cleave the carbon-selenium bond, the silyl enol ether $\underline{1}$ (R = H) was treated with metallic lithium (6 eq) and dimethylaminonaphthalene (DMAN) (0.2 eq)⁷⁾ in THF at -50°C. After 1 hr when the starting material $\underline{1}$ was completely disappeared, it was quenched with water. Product analyses of the reaction mixture showed that 2-t-butyldimethylsilylcyclohexanone $\underline{3}$ was formed in 70% yield along with the deselenylated product, 1-t-butyldimethylsiloxy-cyclohexene (15%). When a similar reaction was carried out at 0°C, $\underline{3}$ (85%) was obtained exclusively. In both cases, the selenium moiety was recovered in ca. 90% yield as diphenyl diselenide by column chromatography. From these results, bond cleavage appears to take place preferentially between vinyl carbon and selenium to yield the corresponding trialkylsiloxyvinyllithium intermediate $\underline{4}$, which undergoes a facile rearrangement of silyl group from oxygen to the anionic carbon site to give the enolate of 2-t-butyldimethylsilyl cyclohexanone $\underline{3}$.

As shown in the Table, various silyl enol ethers of α -selenylated cyclic ketones could be converted into the corresponding α -trialkylsilyl ketones⁸) in good yields by the present procedure. Except diphenyl diselenide, formation of any other by-products was not detected.

In contrast to the cyclic ketone derivatives, the reaction of silyl enol ethers of acyclic ketones accompanied formation of the corresponding acetylenic compounds as by-products, which may result from β -elimination of siloxyvinyl-

lithium intermediates. For example, the reaction of dimethylisopropylsilyl enol ether of α -phenylselenobutyrophenone afforded α -dimethylisopropylsilylbutyrophenone (67%) and l-phenyl-l-butyne (17%). Further, with a phenylselenomethylketone derivative, terminal acetylene formed through this process may also act as a proton source to decompose the siloxyvinyllithium intermediate, which sometimes leads to the formation of deselenylated silyl enol ether as shown in the Table.

Table. Preparation of α -Trialkylsilyl Ketones <u>3</u>.

OSiR'3 R ¹ -C=C-SeC ₆ H ₅ k ²	>	SiR' R ¹ -CO-CH-R ²
1		3

R ¹	R ²	SiR'3	Product (Yield)
-(CH ₂) ₃ -	t-BuSiMe ₂	<u>3</u> (79%)
-(сн ₂) ₄ -	SiEt ₃	<u>3</u> (75%)
-(сн ₂) ₄ -	i-PrSiMe ₂	<u>3</u> (82%)
-(CH ₂ CH ₃) ₄ -	t-BuSiMe ₂	<u>3</u> (85%)
-ċн(сн,		t-BuSiMe ₂	<u>3</u> (84%)
С4 ^Н 9 -СН(СН ₂) ₃ -	i-PrSiMe ₂	<u>3</u> (81%)
-(сн ₂) ₆ -	i-PrSiMe ₂	<u>3</u> (83%)
-(СН ₂) ₁₀ -	t-BuSiMe ₂	3 (78%)
с ₆ н ₅	с ₂ н ₅	i-PrSiMe ₂	<u>3</u> (67%), C ₆ H ₅ C≡CC ₂ H ₅ (17%)
с _б н ₅ сн ₂ сн ₂ сн ₂	н	t-BuSiMe ₂	<u>3</u> (57%), C ₆ H ₅ CH ₂ CH ₂ C≡CH (14%), C ₆ H ₅ CH ₂ CH ₂ C(OSiMe ₂ -t-Bu)=CH ₂ (15%)
^{C6H5CH2CH2}	^C 3 ^H 7	i-PrSiMe ₂	<u>3</u> (65%), C ₆ H ₅ CH ₂ CH ₂ C≡CC ₃ H ₇ (17%)

References and Notes

- J. K. Rasmussen, <u>Synthesis</u>, <u>1977</u>, 91; E. W. Colvin, <u>Chem. Soc. Rev.</u>, <u>7</u>, 15 (1978).
- 2) (a) P. F. Hudrlik and D. Peterson, J. Am. Chem. Soc., <u>97</u>, 1646 (1975);
 (b) K. Utimoto, M. Obayashi, and H. Nozaki, <u>J. Org. Chem.</u>, <u>41</u>, 2940 (1976);
 (c) I. Kuwajima, T. Inoue, and T. Sato, <u>Tetrahedron Lett.</u>, <u>1978</u>, 4887.
- 3) C. R. Hauser and C. R. Hance, J. Am. Chem. Soc., 74, 5091 (1952); T. Sato, T. Abe, and I. Kuwajima, <u>Tetrahedron Lett</u>., <u>1978</u>, 259; M. Obayashi, K. Utimoto, and H. Nozaki, <u>Bull. Chem. Soc. Jpn.</u>, <u>52</u>, 2646 (1979), and ref 2a.
- 4) D. Seebach and N. Peleties, <u>Chem. Ber.</u>, <u>105</u>, 511 (1972); W. Dumont, P. Bayer, and A. Krief, <u>Angew. Chem.</u>, <u>86</u>, 857 (1974); D. Seebach and A. K. Beck, <u>ibid.</u>, <u>86</u>, 859 (1974); W. Dumont and A. Krief, <u>ibid.</u>, <u>87</u>, 347 (1975); D. Van Ende, W. Dumont, and A. Krief, <u>ibid.</u>, <u>87</u>, 709 (1975); I. Kuwajima, S. Hoshino, T. Tanaka, and M. Shimizu, Tetrahedron Lett., 21, 3209 (1980).
- 5) For reviews: D. L. J. Clive, <u>Tetrahedron</u>, <u>34</u>, 1049 (1978); D. L. J. Clive, <u>Aldrichimica Acta</u>, <u>11</u>, 43 (1978); H. J. Reich, <u>Acc. Chem. Res</u>., <u>12</u>, 22 (1980).
- 6) When the reaction was carried out at -78° C, the silyl enol ethers <u>1</u> (R = H) and 2 (R = H) were formed in a ratio of 4:1.
- 7) T. Cohen, <u>Syn. Commun.</u>, <u>1980</u>, 311; T. Cohen and J. R. Matz, <u>J. Am. Chem.</u> Soc., 102, 6900 (1980).
- Recently, Kowalski and his collaborators reported a preparative method of trimethylsilyl enol ethers of α-trimethylsilyl ketones from the corresponding α-halo ketones or 1-acetoxy-2-halo olefins via dianionic species: C. J. Kowalski, M. L. O'Dowd, M. C. Burke, and K. W. Fields, J. Am. Chem. Soc., 102, 5411 (1980).

(Received in Japan 14 March 1981)